BioDent,OsteoProbe®利生物材料微结构力学性能纳米压痕实验系统,生物材料微结构力学性能纳米压痕仪
型号:BioDent,OsteoProbe®利
价格:请致电:010-67529703
品牌:activelifescientific

简单介绍

BioDent,OsteoProbe®利用参考点压痕量测技术检测活体内骨骼组织之机械性质! BioDent™ 骨等组织参考点压痕测试分析系统可以测量骨和其他组织的力学特性,具有离体测量和在体测量两种模式,可以直接在活体动物上在体测试分析骨等组织等力学特性;能获得以前无法获得的临床数据,如骨和其他组织的材料性质,对骨等组织尤为适用。 OsteoProbe® RUO为便携式在体/离体骨组织测量


 

BioDent,OsteoProbe®参考点纳米压痕系统的详细介绍

 BioDent,OsteoProbe®利用参考点压痕量测技术检测活体内骨骼组织之机械性质!

 BioDent™ 骨等组织参考点压痕测试分析系统可以测量骨和其他组织的力学特性,具有离体测量和在体测量两种模式,可以直接在活体动物上在体测试分析骨等组织等力学特性;能获得以前无法获得的临床数据,如骨和其他组织的材料性质,对骨等组织尤为适用。 OsteoProbe® RUO为便携式在体/离体骨组织测量仪为BioDent™ 骨等组织参考点压痕测试分析系统手持版本

 

BioDent使用设计独特的微探针在微米水平上对组织施压。探针处于一个小套管内部(2 A),套管可在组织上或组织内部建立参考点,然后便可测量软、硬材料和生物材料的凹陷距离、相对刚度和能量耗散,从而精确地检测材料力学性质(2 B)。在恒力工作模式下,BioDent测量探针相对于参考点移动的距离,作为在此压力下材料发生的形变。在恒定距离工作模式(即将推出)下,BioDent测量使材料发生此种程度的形变时需要的力。

BioDent可临床测量材料性质作为健康或病变组织的指标。这些组织通常由不同的软硬组织在微米尺度上组合形成(图3),BioDent可在微米和毫米尺度上进行测量,以用于不同的生物材料。

  

 

 OsteoProbe® RUO是在体测量骨组织材料性质的唯一仪器,是实验室和临床研究中测量骨质量的有力工具。OsteoProbe® RUO是一种便携式单手操作微压痕仪,与测量骨密度的放射性方法(X射线、DXACT)具有不同的原理,它使用参考点压痕技术来检测材料对局部压力的抵抗性。 

OsteoProbe® RUO使用特别设计的探针来进行皮下测量,无须切开组织。探针刺空软组织达到骨表面建立一个参考点,当探针受力达到一个预先设定的阈值后会自动触发更大的力进行测量。软件会记录下来凹陷深度和力之间的函数关系,然后用聚甲基丙烯酸甲酯作为参照材料进行校准来获得BMSi(材料强度指数)。

 

 

What is BioDent™?

BioDent™ is a bench-top Reference Point Indentation platform that enables scientists to easily measure the material properties of tissues and biomaterials. The in vitro to in vivo testing modes set BioDent™ apart from other instruments, enabling the acquisition of previously impossible material property data that has clinical relevance – clinically measurable material properties.

While conventional material property testers have existed for decades and contribute valuable data to modern research, their testing methods cannot be translated  into the clinical setting – a requirement by many of today’s research funding sources.  BioDent™ enables translational research of biomaterial and tissue material properties.

Click the video below for an introduction to BioDent™ and the flagship bone testing applications. Don’t research bone? That’s OK.  Soft material applications are under development today.

Why Do I Need BioDent™?

BioDent™ will enable you to easily and directly obtain clinically measurable material properties of your tissues or biomaterials. It is generally understood that material properties are an important contributor to tissue and biomaterial health. However, no instruments have been available to easily measure these properties in the laboratory – often causing this important information to be excluded from research.  Also, no tools have previously been available to measure tissue material properties in vivo – resulting in frequent exclusion of their evaluation in life science research altogether.  BioDent™ is the first and only solution for life science researchers to easily and directly obtain clinically measurable material properties.

 

How Does BioDent™ Work?

BioDent™ uses a microscopic wire test probe to push on a tissue or biomaterial at the micrometer level.  The test probe can be sheathed inside a small cannula reference probe which establishes a reference point on or in the sample.  In force-controlled mode, BioDent™ measures the distance the test probe moves relative to the reference point as an indication of how much the material gave-way or flowed when pushed on at controlled force.  In distance-controlled mode (coming soon) BioDent™ measures the force required to push a test probe a predetermined distance into the material, relative to the reference point.

 

Click here to learn how BioDent™ works.

 

What Does BioDent™ Tell Me?

BioDent™ provides clinically measurable material properties as a potential signature of tissue health or disease. Hard and soft tissues are comprised of many material components that come together to form the tissue at the micrometer length scale. Depending on your setup, BioDent™ can probe across the micrometer to millimeter length scale in order to provide a robust measure across all material components in the tissue or biomaterial.  BioDent™ can also provide previously impossible direct, in vivo measures of material properties – clinically measurable material properties.

 

How Easy is it to Use BioDent™?

Like every scientific instrument there is some training required before using BioDent™, however unlike many scientific instruments, no technical background is necessary.  ActiveLife Scientific provides all training material with the instrument, sufficient to get a non-technical scientist up and running in a few hours or less.  For Advanced Users, certain BioDent™ configurations offer access to waveform control inputs and data analysis outputs through layered interfaces (coming soon).





How BioDent Works on Hard Tissue?

 

BioDent™ is a versatile (in vivo/in vitro/ex vivo and small/large sample) bench-top microindentation instrument for measuring the material properties of hard tissue as well as soft tissue and biomaterials. BioDent™ uses Reference Point Indentation (RPI) technology to perform precise indentations into a sample to extract valuable material property information.

BioDent uses a unique probe assembly to establish a surface-localized reference point to accurately “feel” a material. This probe assembly includes a test probe contained within the sheath of an outer reference probe (see images below), which allows the reference probe to establish and maintain a reference point on the material enabling the test probe to precisely indent the material relative to that established reference point. The tutorial below focuses on using BioDent for hard tissue (ex: bone) measurements, for more on soft tissue measurements click here.

BioDent Measures:
•    Indentation Distances
•    Relative Stiffness
•    Energy Dissipation
** See below to learn what’s happening during a measurement at each phase of the Force vs Displacement curve (A through D).**

 

A. Reference probe establishes local reference point
The reference probe establishes a reference point at the sample’s surface and is secured in place. Next, the test probe moves towards the sample’s surface (section “A” of graph above).

 

B. Test probe identifies surface, ramp up force, observe loading
The test probe identifies the surface and the ramps up the applied force in a controlled manner and the depth of test probe penetration (displacement) is measured relative to the local reference point (section “B” of graph above).

 

C. Max force reached, then held constant to observe creep effects
The test probe applied force reaches the protocol-determined maximum where it is held constant for a set period of time to observe potential creep effects within the sample (section “C” of graph above).

 

D. Force is decreased, material causes test probe to retract, observe unloading
The test probe applied force in decreased in a controlled manner causing the probe to retract according to the force it experiences from the sample “pushing back” or “recovering from deformation”(section “D” of graph above).

 

What does BioDent Measure in Bone?

BioDent™ generates Force vs Displacement data for each indentation cycle. The cycling capability allows for the acquisition of dynamic information such as local resistance to failure in harder tissues and Tan Delta in cartilage. Together the Force vs Displacement data allows for the quantification of relative changes in material stiffness, indentation depth, and energy dissipation.

Indentation Distance


Useful ResourcesExplore articles discussing the utility of  measuring Indentation Distances.
  • RPI correlates with bone toughness assessed using whole-bone traditional mechanical testing M. Allen et alBone 2013
  • RPI Invention & Background
  • RPI, Indentation distance, & Fracture Assessment
  • RPI Measurements In Vivo
  • What can RPI Measure?
Indentation distance (ID) is the depth reached by the test probe after a single indentation or series of indentations. Bone material’s ability to resist probe penetration has been conceptualized as the ease of separating mineralized collagen fibrils, and has shown promise as a potential fracture risk assessment measure.
Total Indentation Distance (TID): total depth reached by the test probe after a single indention or series of indentations.
Indentation Distance Increase (IDI): an output from a series of cyclic indentions, comparing the difference in depth between the first and last indention cycle. Testing bone’s ability to resist repeat indentations.

 

Relative Stiffness

Material A vs. Material B
AL = Material A Loading Slope
AU = Material A Unloading Slope
BL = Material B Loading Slope
BU = Material B Unloading Slope

Useful ResourcesExplore articles that discuss stiffness and its utility in hard and soft tissues. 
  • The tissue diagnostic instrumentHansma et al, Review of Scientific Instruments 2009
  • RPI and Measuring Soft Tissues
  • RPI Invention & Background
  • What can RPI Measure?
Changes in Relative Stiffness can be obtained from the loading and unloading slopes. The steeper the slope the stiffer the material since it requires greater force per micron of displacement. **Graph above displays a comparison of materials A & B after a single indention cycle. Material A is stiffer than B.**

 


Energy Dissipation

Useful Resources

Explore articles that discuss energy dissipation & its utility in hard and soft tissues.
  • Towards a standardized reference point indentation testing procedure. Setters & Jasiuk, Journal of the Mechanical Behavior of Biomedical Materials 2013
  • RPI & Measuring Soft Tissues
  • RPI Invention & Background
  • What can RPI Measure?

 

 

Energy Dissipation measures the material’s response to indentation and is typically manifested in the form of surface deformation. This is a metric for the elasticity or plasticity of the bone material and can be conceptualized as the capacity of the material to “recover” from the indentation. 



How BioDent Soft Tissue Works

 

BioDent™ is a versatile (in vivo/in vitro/ex vivo and small/large sample) bench-top microindentation instrument for measuring the material properties of hard tissue as well as soft tissue and biomaterials. BioDent™ uses Reference Point Indentation (RPI) technology to perform precise indentations into a sample to extract valuable material property information.

BioDent uses a unique probe assembly to establish a surface-localized reference point to accurately “feel” a material. This probe assembly includes a test probe contained within the sheath of an outer reference probe (see images below), which allows the reference probe to establish and maintain a reference point on the material enabling the test probe to precisely indent the material relative to that established reference point. The tutorial below focuses on using BioDent for soft tissue and biomaterial measurements, for more on hard tissue measurements click here.

 

    RPI Measures:
  • Force required to reach set displacement
  • Relative Stiffness
  • Energy Dissipation

** See below to learn what’s happening during and RPI measurement at each phase of the Force vs Displacement curve (A through D).**

 


A. Test probe identifies surface

The reference probe establishes a reference point at the sample’s surface and is secured in place. Next, the test probe moves towards the sample’s surface (section “A” of graph above).

 


B. Test probe ramps up downward force, observe loading

The test probe identifies the surface and the ramps up the applied force in a controlled manner and the depth of test probe penetration (displacement) is measured relative to the local reference point (section “B” of graph above).

 


C. Test probe reaches max displacement (designated by user)

The test probe reaches the protocol-determined maximum displacement (section “C” of graph above).

 


D. Force is decreased, material causes test probe to retract, observe unloading

The test probe applied force in decreased in a controlled manner causing the probe to retract according to the force it experiences from the sample “pushing back” or “recovering from deformation”(section “D” of graph above).

 

What does Reference-Point Indentation Measure in Soft Tissue?

RPI generates Force vs Displacement data for each indentation cycle. The cycling capability allows for the acquisition of dynamic information such as Tan Delta in cartilage. Together the Force vs Displacement data allows for thequantification of relative changes in material stiffness, required indentation force, and energy dissipation.

 

Relative Stiffness

Changes in Relative Stiffness can be obtained from the loading and unloading slopes. The steeper the slope the stiffer the material since it requires greater force per micron of displacement. **Graph above displays a comparison of materials A & B after a single indention cycle. Material A is more stiff than B.**

 

Energy Dissipation

参考文献

Useful Soft Tissue Literature

 

  • Local tissue properties of human osteoarthritic cartilage correlate with magnetic resonance T1rho relaxation times
    Tang, S. Y. et al J. Ortho Research 201129, 1312-1319.
  • In situ materials characterization using the tissue diagnostic instrument
    Tang, S. Y. et al Polymer testing 201029, 159-163.
  • RPI & Measuring Soft Tissues

 




参考文献

Reference Point Indentation Publications by Year

(69) “Application of reference point indentation for micro-mechanical surface characterization of calcium silicate based dental materials”
Antonijević, D., et al.
Biomedical Microdevices 2015.
RPI Technology: BioDent™

(68) “A direct role of collagen glycation in bone fracture”
Poundarik, A., et al.
Journal of the Mechanical Behavior of Biomedical Materials 2015.
RPI Technology: BioDent™

(67) “Strain differences in the attenuation of bone accrual in a young growing mouse model of insulin resistance.”
Rendina-Ruedy, E., et al.
Journal of Bone and Mineral Metabolism 2015.
RPI Technology: BioDent™

(66) “Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice.”
Portal-Núñez, S., et al.
The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2015.
RPI Technology: BioDent™

(65) “Estimation of local anisotropy of plexiform bone: Comparison between depth sensing micro-indentation and Reference Point Indentation.”
Dall’Ara, E. et al.
Journal of Biomechanics 2015.
RPI Technology: BioDent™

(64) “Bone material strength is associated with areal BMD but not with prevalent fractures in older women.”
Rudäng, R., et al.
Osteoporosis International 2015.
RPI Technology: OsteoProbe®

(63) “A High Amount of Local Adipose Tissue is Associated with High Cortical Porosity and Low Bone Material Strength in Older Women.”
Sundh, D., et al.
Journal of Bone and Mineral Research 2015.
RPI Technology: OsteoProbe®

(62) “Age-related changes in the fracture resistance of male Fischer F344 rat bone.”
Uppuganti, S., et al.
Bone 2015.
RPI Technology: BioDent™

(61) “Effect of various testing conditions on results for a handheld reference point indentation instrument in horses.”
Lescun, Timothy B., et al.
American Journal of Veterinary Research 2015.
RPI Technology: OsteoProbe®

(60) “Site Dependent Reference Point Microindentation Complements Clinical Measures for Improved Fracture Risk Assessment at the Human Femoral Neck.”
Thurner, P. J., et al.
Journal of Bone and Mineral Research 2015.
RPI Technology: BioDent™

(59) “Determinants of bone strength and quality in diabetes mellitus in humans.”
Khosla, S., et al.
Bone 2015.
RPI Technology: OsteoProbe®

(58) “Microstructure and wettability of root canal dentine and root canal filling materials after different chemical irrigation.”
Busse, B., et al.
Applied Surface Science 2015.
RPI Technology: BioDent™

(57) “In vivo reference point indentation measurement variability in skeletally mature inbred mice.”
Organ, J., et al.
BoneKEy Reports 2015.
RPI Technology: BioDent™

(56) “Multiscale Predictors of Femoral Neck in situ Strength in Aging Women: Contributions of BMD, Cortical Porosity, Reference Point Indentation, and Nonenzymatic Glycation.”
Abraham, A. C., et al.
Journal of Bone and Mineral Research 2015.
RPI Technology: BioDent™

(55)”Toughness and damage susceptibility in human cortical bone is proportional to mechanical inhomogeneity at the osteonal-level.”
Orestis L. Katsamenis, Thomas Jenkins b, Philipp J. Thurner.
Bone 2015.
RPI Technology: BioDent™

(54) “Are the High Hip Fracture Rates Among Norwegian Women Explained by Impaired Bone Material Properties?”
Daysi Duarte Sosa, Laila Vilaplana, Roberto Güerri, Xavier Nogues, Morten Fagerland, Adolfo Diez-Perez, Erik Eriksen.
JBMR 2015.
RPI Technology: OsteoProbe®

(53) “Bone Material Strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of Bone Mineral Density.” Malgo, F., N. A. T. Hamdy, S. E. Papapoulos and N. M. Appelman-Dijkstra.
The Journal of Clinical Endocrinology & Metabolism 2015.
RPI Technology: OsteoProbe®

(52) “Bone Tissue Properties Measurement by Reference Point Indentation in Glucocorticoid-Induced Osteoporosis.”
Mellibovsky, L., D. Prieto-Alhambra, F. Mellibovsky, R. Güerri-Fernández, X. Nogués, C. Randall, P. K. Hansma and A. Díez-Perez
Journal of Bone and Mineral Research. 2015 
RPI Technology: OsteoProbe®

(51) “True Gold or Pyrite: A Review of Reference Point Indentation for Assessing Bone Mechanical Properties In Vivo.”
Allen, M. R., et al.
Journal of Bone and Mineral Research. 2015
RPI Technology: OsteoProbe® and BioDent™
“Letter to the Editor Regarding Allen et al.” Khosla, Sundeep. JBMR. 2015
“Reply to Letter to the Editor.” Allen, Matt R. JBMR. 2015

(50) “Variability in reference point micro-indentation and Recommendations for testing cortical bone: Location, thickness and orientation heterogeneity.”
Coutts, L. V., T. Jenkins, T. Li, D. G. Dunlop, R. O. C. Oreffo, C. Cooper, N. C. Harvey, P. J. Thurner, N. K. Arden, J. M. Latham, P. Taylor, M. Baxter, N. Moss, C. Ball and K. Chan.
Journal of the Mechanical Behavior of Biomedical Materials 2015.
RPI Technology: BioDent

(49) “Variability in reference point microindentation and recommendations for testing cortical bone: Maximum load, sample orientation, mode of use, sample preparation and measurement spacing.”
Jenkins, T., L. V. Coutts, D. G. Dunlop, R. O. C. Oreffo, C. Cooper, N. C. Harvey and P. J. Thurner.
Journal of the Mechanical Behavior of Biomedical Materials 2015. 42(0): 311-324
RPI Technology: BioDent™

(48) “Lack of prolidase causes a bone phenotype both in human and in mouse.”
Besio, R., et al.
Bone 2015.
RPI Technology: BioDent™

(47) “Study of indentation of a sample equine bone using finite element simulation and single cycle reference point indentation.”
Hoffseth, K., C. Randall, P. Hansma and H. T. Y. Yang
Journal of the Mechanical Behavior of Biomedical Materials 2015. 
RPI Technology: OsteoProbe®

(46) Identifying novel clinical surrogates to assess human bone fracture toughness.”
Granke, M., A. J. Makowski, S. Uppuganti, M. D. Does and J. S. Nyman
Journal of Bone and Mineral Research 2015.
RPI Technology: BioDent™

(45) “Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone.”
Milovanovic, P., E. A. Zimmermann, C. Riedel, A. v. Scheidt, L. Herzog, M. Krause, D. Djonic, M. Djuric, K. Püschel, M. Amling, R. O. Ritchie and B. Busse
Biomaterials 2015.
RPI Technology: BioDent™

(44) “Characterization of Damage Mechanisms Associated with Reference Point Indentation in Human Bone.”
Bryan G. Beutel, Oran D. Kennedy
Bone 2015.
RPI Technology: BioDent™

(43) “Biomechanical Mechanisms: Resolving the Apparent Conundrum of Why Individuals with Type II Diabetes Show Increased Fracture Incidence Despite Having Normal BMD.”
Jepson, K., Schlecht, S.
Journal of Bone and Mineral Research 2014.
RPI Technology: OsteoProbe®

(42) “The Primary Function of gp130 Signaling in Osteoblasts Is To Maintain Bone Formation and Strength, Rather Than Promote Osteoclast Formation.”
Johnson, R. W., H. J. Brennan, C. Vrahnas, I. J. Poulton, N. E. McGregor, T. Standal, E. C. Walker, T.-T. Koh, H. Nguyen, N. C. Walsh, M. R. Forwood, T. J. Martin and N. A. Sims.
Journal of Bone and Mineral Research 2014. 29(6): 1492-1505.
RPI Technology: BioDent™

(41) “Nanoscale changes in collagen are reflected in physical and mechancial properties of bone at the microscale in diabetic rats”
Max A. Hammond a, Maxime A. Gallant b, David B. Burr b,d, Joseph M. Wallace
Bone 2014.
RPI Technology: BioDent™

(40) “Nano-structural, compositional and micro-architectural signs of cortical bone fragility at the superolateral femoral neck in elderly hip fracture patients vs. healthy aged controls”
Milovanovic, P.; Rakocevic, Z.; Djonic, D.; Zivkovic, V.; Hahn, M.; Nikolic, S.; Amling, M.; Busse, B.; Djuric, M.
Experimental Gerontology 2014.
RPI Technology: BioDent™

(39) “Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta.” Bart, Z. R., M. A. Hammond and J. M. Wallace.
Connective Tissue Research 2014.
RPI Technology: BioDent™

(38) “Towards a standardized reference point indentation testing procedure”
Setters, A.; Jasiuk, I.
Journal of the Mechanical Behavior of Biomedical Materials 201434, 57-65.
RPI Technology: BioDent™

(37) “Insights into Reference Point Indentation Involving Human Cortical Bone: Sensitivity to Tissue Anisotropy and Mechanical Behavior.”
Granke, M., A. Coulmier, S. Uppuganti, J. A. Gaddy, M. D. Does and J. S. Nyman
Journal of the Mechanical Behavior of Biomedical Materials 2014.
RPI Technology: BioDent™

(36) “Cortical Bone Mechanical Properties Are Altered in an Animal Model of Progressive Chronic Kidney Disease.” Newman, C. L., S. M. Moe, N. X. Chen, M. A. Hammond, J. M. Wallace, J. S. Nyman and M. R. Allen. 
PLoS ONE 2014.
RPI Technology: BioDent™

(35) “EphrinB2 signaling in osteoblasts promotes bone mineralization by preventing apoptosis.”
Tonna, S., F. M. Takyar, C. Vrahnas, B. Crimeen-Irwin, P. W. M. Ho, I. J. Poulton, H. J. Brennan, N. E. McGregor, E. H. Allan, H. Nguyen, M. R. Forwood, L. Tatarczuch, E. J. Mackie, T. J. Martin and N. A. Sims.
 The FASEB Journal. 2014.
RPI Technology: BioDent™

(34) “Reference point indentation is not indicative of whole mouse bone measures of stress intensity fracture toughness.”
Carriero, A., et al.
Bone 2014.
RPI Technology: BioDent™

(33) “Caspase-2 Maintains Bone Homeostasis by Inducing Apoptosis of Oxidatively-Damaged Osteoclasts”
Sharma, R.; Callaway, D.; Vanegas, D.; Bendele, M.; Lopez-Cruzan, M.; Horn, D.; Guda, T.; Fajardo, R.; Abboud-Werner, S.; Herman, B.
PLoS ONE 2014.
RPI Technology: BioDent™

(32) “Variability of in vivo reference point indentation in skeletally mature inbred rats.”
Allen, M. R., C. L. Newman, E. Smith, D. M. Brown and J. M. Organ.
Journal of Biomechanics 2014.
RPI Technology: BioDent™

(31) “Hyperlipidemia affects multiscale structure and strength of murine femur.”
Ascenzi, M.-G., A. Lutz, X. Du, L. Klimecky, N. Kawas, T. Hourany, J. Jahng, J. Chin, Y. Tintut, U. Nackenhors and J. Keyak.
Journal of Biomechanics 2014.
RPI Technology: BioDent™

(30)  “Role of donor and host cells in muscle-derived stem cell-mediated bone repair: differentiation vs. paracrine effects.”
Gao, X., A. Usas, J. D. Proto, A. Lu, J. H. Cummins, A. Proctor, C.-W. Chen and J. Huard.
The FASEB Journal 2014, 28(8): 3792-3809.
RPI Technology: BioDent™

(29) “Antagonizing the αvβ3 Integrin Inhibits Angiogenesis and Impairs Woven but Not Lamellar Bone Formation Induced by Mechanical Loading”
Tomlinson, R. E.; Schmieder, A. H.; Quirk, J. D.; Lanza, G. M.; Silva, M. J.
Journal of Bone and Mineral Research 2014,
RPI Technology: BioDent™

(28) “Effect of sequential treatments with alendronate, parathyroid hormone (1–34) and raloxifene on cortical bone mass and strength in ovariectomized rats.”
Amugongo, S. K., W. Yao, J. Jia, W. Dai, Y.-A. E. Lay, L. Jiang, D. Harvey, E. A. Zimmermann, E. Schaible, N. Dave, R. O. Ritchie, D. B. Kimmel and N. E. Lane
Bone 2014.
RPI Technology: BioDent™

(27) “Modifications to Nano- and Microstructural Quality and the Effects on Mechanical Integrity in Paget’s Disease of Bone.”
Zimmermann, E. A., T. Köhne, H. A. Bale, B. Panganiban, B. Gludovatz, J. Zustin, M. Hahn, M. Amling, R. O. Ritchie and B. Busse.
Journal of Bone and Mineral Research 2014.
RPI Technology: BioDent™

(26) “Commentary on Sclerostin Deficiency is Linked to Altered Bone Composition ”
Erik Fink Eriksen
Journal of Bone and Mineral Research 2014.
RPI Technology: OsteoProbe®

(25) “The use of traditional and novel techniques to determine the hardness and indentation properties of immature radicular dentin treated with antibiotic medicaments followed by ethylenediaminetetraacetic acid”
Yassen ,G. H.; Al-Angari S. S.; Platt J. A.
European Journal of Dentistry 2014
RPI Technology: BioDent™

(24) “Osteoblast-Specific Deletion of Pkd2 Leads to Low-Turnover Osteopenia and Reduced Bone Marrow Adiposity.”
Xiao, Z., et al.
PLoS ONE 2014.
RPI Technology: BioDent™

(23) Microindentation for in vivo measurement of bone tissue material properties in atypical femoral fracture patients and controls”
Güerri‐Fernández, R. C.; Nogués, X.; Quesada Gómez, J. M.; Torres del Pliego, E.; Puig, L.; García‐Giralt, N.; Yoskovitz, G.; Mellibovsky, L.; Hansma, P. K.; Díez‐Pérez, A.
Journal of Bone and Mineral Research 201328, 162-168.
RPI Technology: BioDent™

(22) “RPI correlates with bone toughness assessed using whole bone tradiation mechanical testing”
Maxime A. Gallant, Drew M. Brown, Jason M. Organ, Matthew R. Allen, David B. Burr
Bone  2013.
RPI Technology: BioDent™

(21) “In Vivo assessment of bone quality in postmenopausal women with type 2 diabetes”
Farr, J. N.; Drake, M. T.; Amin, S.; Melton, L. J.; McCready, L. K.; Khosla, S.
Journal of Bone and Mineral Research 2013.
RPI Technology: OsteoProbe®

(20) “In vivo reference point indentation reveals positive effects of raloxifene on mechanical properties following 6 months of treatment in skeletally mature beagle dogs”
Aref, M.; Gallant, M. A.; Organ, J. M.; Wallace, J. M.; Newman, C. L.; Burr, D. B.; Brown, D. M.; Allen, M. R.
Bone 2013.
RPI Technology: BioDent™

(19)”Reference point indentation study of age-related changes in porcine femoral cortical bone”
Rasoulian, R.; Raeisi Najafi, A.; Chittenden, M.; Jasiuk, I.
Journal of biomechanics 2013.
RPI Technology: BioDent™

(18) “Applications of a new hand-held RPI instrament measuring bone material strength”
A. Diez-Perez, P. Hansma
J. Med. Devices 2013.
RPI Technology: OsteoProbe®

(17) “Elevated Mechanical Loading When Young Provides Lifelong Benefits to Cortical Bone Properties in Female Rats Independent of a Surgically Induced Menopause”
Stuart J. Warden, Matthew R. Galley, Andrea L. Hurd, Joseph M. Wallace, Maxime A. Gallant, Jeffrey S. Richard, and Lydia A. George
Endocrinology 2013.
RPI Technology: BioDent™

(16) “A novel approach to evaluate the effect of medicaments used in endodontic regeneration on root canal surface indentation”
Yassen, G. H.; Chu, T.-M. G.; Gallant, M. A.; Allen, M. R.; Vail, M. M.; Murray, P. E.; Platt, J. A.
Clinical oral investigations 2013.
RPI Technology: BioDent™

(15) “Measuring Bone Quality”
Elisa Torres-del-Pliego & Laia Vilaplana & Roberto Güerri-Fernández & Adolfo Diez-Pérez
Current Rheumatology Reports 2013
RPI Technology: OsteoProbe®

(14) “Intervertebral discs from spinal nondeformity and deformity patients have different mechancial and matrix properties”
Kevin K. Cheng, Sigurd H. Berven, Serena S. Hu,  Jeffrey C. Lotz
The Spine Journal 2013.
RPI Technology: BioDent™

(13) “Multi-scale analysis of bone chemistry, morphology and mechanics in the oim model of osteogenesis imperfecta.” Bart, Z. R., M. A. Hammond and J. M. Wallace.
Connective Tissue Research 2014.
RPI Technology: BioDent™

(12) “A new device for performing RPI without reference probe”
Daniel Bridges, Connor Randall, and Paul K. Hansma.
Review of Scientific Instruments 2012.
RPI Technology: OsteoProbe®

(11) “The contribution of the extracellular matrix to the fracture resistance of bone”
Jeffry S. Nyman & Alexander J. Makowski
Current Osteoporosis Reports
RPI Technology: BioDent™

(10) “The effects of freezing on the mechanical properties of bone”
Bryan Kaye, Connor Randall, Daniel Walsh and Paul Hansma
Open Bone Journal,  2012.
RPI Technology: BioDent™

(9) “Local tissue properties of human osteoarthritic cartilage correlate with magnetic resonance T1rho relaxation times”
Simon Y. Tang, Richard B. Souza, Michael Ries, Paul K. Hansma, Tamara Alliston, Xiaojuan Li
Journal of Orthopaedic Resesarch Month 2011.
RPI Technology: BioDent™

(8) “Validation of BioDent TDI as new clincal diagnostic method”
Wade
Advanced Materials Research 2011.
RPI Technology: BioDent™

(7) “Microindentation for in vivo measurement of bone tissue mechanical properties in humans”
Paul Hansma, et al.
Journal Bone Mineral Research  2010.
RPI Technology: BioDent™

(6) “In situ materials characterization using the tissue diagnostic instrument”
Tang, S. Y.; Mathews, P.; Randall, C.; Yurtsev, E.; Fields, K.; Wong, A.; Kuo, A. C.; Alliston, T.; Hansma, P.
Polymer testing 2010.
RPI Technology: BioDent™

(5) “”The tissue diagnostic instrument”
Hansma, P.; Yu, H.; Schultz, D.; Rodriguez, A.; Yurtsev, E. A.; Orr, J.; Tang, S.; Miller, J.; Wallace, J.; Zok, F.
Review of Scientific Instruments 2009.
RPI Technology: BioDent™

(4) “Skeletal changes associated with the onset of type 2 diabetes in the ZDF and ZDSD rodent models ”
Susan Reinwald, Richard G. Peterson, Matt R. Allen and David B. Burr
Am. J. Physiol. Endocrinology and Metabolism 2009.
RPI Technology: BioDent™

(3) “The bone diagnostic instrument III: testing mouse femora”
Randall, C.; Mathews, P.; Yurtsev, E.; Sahar, N.; Kohn, D.; Hansma, P.
Review of Scientific Instruments 2009.
RPI Technology: BioDent™

(2) “The effect of NaF in vitro on the mechanical and material properties trabecular and cortical bone”
Philipp J. Thurner, Blake Erickson, Patricia Turner, Ralf Jungmann, Jason Lelujian, Alexander Proctor, James C. Weaver, Georg Schitter, Daniel E. Morse, and Paul K. Hansma
Advanced Materials 2009.
RPI Technology: BioDent™

(1) “Mechanical profiling of intervertebral discs”
David S. Schultz
Journal of Biomechanics 2009.
RPI Technology: BioDent™