RK-100,LP-100影像导航聚焦超声系统, MRI-compatible image-guided focused ultrasound system

型号:RK-100,LP-100
价格:请致电:010-67529703
品牌:fus instruments

RK-100台式聚焦超声系统

 MRI-compatible image-guided focused ultrasound system

这一可兼容核磁共振成像的影像导航聚焦超声系统由一套电脑控制的高精度三维定位系统和高能的聚焦超声转换器组成。
定位系统能够地向毫米大小的区域输送聚焦超声能量到软组织。这一系统专门用于研究从小到大的动物模型,从而探究超声-组织相互作用,在用于人体之前评价治疗方法的安性,可匹配临床MR和CT扫描仪从而完成影像导航的治疗计划和递送。该系统完无磁性,因而可以与高场核磁成像仪共同工作,还可匹配X射线CT成像。 


The MRI-compatible image-guided focused ultrasound system consists of a computer-controlled high-precision three-axis positioning system and a high-power focused ultrasound transducer coupled.
The positioning system enables delivery of focused ultrasound energy to precise locations in soft tissue. The system is designed specifically for research in small to large animal models to investigate ultrasound-tissue interactions, and to evaluate the safety of therapeutic approaches prior to translation into humans. The entire FUS system fits within the bore of a clinical MR or CT scanner for image-guided treatment planning and delivery. The system is completely non-magnetic, enabling it to function within a high-field magnetic resonance imager for image-guided treatment planning and monitoring of ultrasound exposures. In addition, the system is compatible with X-ray CT imaging as well.
lp-production-iso-in-bore
Inside every RK-100 is a custom-built and calibrated focused ultrasound transducer capable of exposing millimeter – size volumes of tissue within a subject.
The non-magnetic positioning system can translate the transducer along arbitrary 3D paths during imaging. The delivery of ultrasound exposures is achieved using images acquired with MRI or CT, depending on the configuration of the system. Real-time monitoring of forward and reflected electrical power to the transducer enables consistent delivery of energy during experiments.
The system is capable of delivering exposures ranging from high-power continuous sonications for thermal coagulation of soft tissues, to pulsed sonications suitable for applications such as tissue lysis, drug delivery, or vascular permeabilization. Since the system is designed for research it is designed to be flexible, offering users the capability to design their experiments to suit their needs.



Studies using FUS Instruments’ Systems

Moyer, Linsey C., et al. “High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles.” Journal of Therapeutic Ultrasound 3.1 (2015): 7.

Ellens, N. P. K., et al. “The targeting accuracy of a preclinical MRI-guided focused ultrasound system.” Medical physics 42.1 (2015): 430-439.

Burgess, Alison, et al. “Alzheimer disease in a mouse model: MR imaging–guided focused ultrasound targeted to the hippocampus opens the blood-brain barrier and improves pathologic abnormalities and behavior.”Radiology 273.3 (2014): 736-745.

Diaz, Roberto Jose, et al. “Focused ultrasound delivery of Raman nanoparticles across the blood-brain barrier: Potential for targeting experimental brain tumors.” Nanomedicine: Nanotechnology, Biology and Medicine 10.5 (2014): 1075-1087.

Nance, Elizabeth, et al. “Non-invasive delivery of stealth, brain-penetrating nanoparticles across the blood? brain barrier using MRI-guided focused ultrasound.” Journal of Controlled Release 189 (2014): 123-132.

Oakden, Wendy, et al. “A non-surgical model of cervical spinal cord injury induced with focused ultrasound and microbubbles.” Journal of neuroscience methods 235 (2014): 92-100.
.
Phillips, Linsey C., et al. “Dual perfluorocarbon nanodroplets enhance high intensity focused ultrasound heating and extend therapeutic window in vivo.” The Journal of the Acoustical Society of America 134.5 (2013): 4049-4049.
.
Alkins, Ryan D., et al. “Enhancing drug delivery for boron neutron capture therapy of brain tumors with focused ultrasound.” Neuro-oncology (2013): not052.

Alkins, Ryan, et al. “Focused ultrasound delivers targeted immune cells to metastatic brain tumors.” Cancer research 73.6 (2013): 1892-1899.

Huang, Yuexi, Natalia I. Vykhodtseva, and Kullervo Hynynen. “Creating brain lesions with low-intensity focused ultrasound with microbubbles: a rat study at half a megahertz.” Ultrasound in medicine & biology 39.8 (2013): 1420-1428.

Jord?o, Jessica F., et al. “Amyloid-β plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound.” Experimental neurology 248 (2013): 16-29.

Scarcelli, Tiffany, et al. “Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice.” Brain stimulation 7.2 (2013): 304-307.

Etame, Arnold B., et al. “Enhanced delivery of gold nanoparticles with therapeutic potential into the brain using MRI-guided focused ultrasound.” Nanomedicine: Nanotechnology, Biology and Medicine 8.7 (2012): 1133-1142.

 

Thévenot, Emmanuel, et al. “Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound.” Human gene therapy 23.11 (2012): 1144-1155.

 

Staruch, Robert, Rajiv Chopra, and Kullervo Hynynen. “Hyperthermia in Bone Generated with MR Imaging–controlled Focused Ultrasound: Control Strategies and Drug Delivery.” Radiology 263.1 (2012): 117-127.

 

Burgess, Alison, et al. “Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier.” PLoS One 6.11 (2011): e27877.

 

Jord?o, Jessica F., et al. “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer’s disease.” PloS one 5.5 (2010): e10549.

 


Blood-Brain Barrier Disruption Studies

Leinenga, Gerhard, and Jürgen G?tz. “Scanning ultrasound removes amyloid-β and restores memory in an Alzheimer’s disease mouse model.” Science translational medicine 7.278 (2015): 278ra33-278ra33.

 

Wang, S., et al. “Noninvasive, neuron-specific gene therapy can be facilitated by focused ultrasound and recombinant adeno-associated virus.” Gene Therapy 22.1 (2015): 104-110.

 

McDannold, Nathan, et al. “Temporary disruption of the blood–brain barrier by use of ultrasound and microbubbles: safety and efficacy evaluation in rhesus macaques.” Cancer research 72.14 (2012): 3652-3663.

 

Treat, Lisa H., et al. “Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma.” Ultrasound in medicine & biology 38.10 (2012): 1716-1725.
.

Kinoshita, Manabu, et al. “Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood–brain barrier disruption.” Proceedings of the National Academy of Sciences 103.31 (2006): 11719-11723.

 

Kinoshita, Manabu, et al. “Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound.” Biochemical and biophysical research communications 340.4 (2006): 1085-1090.
.


Relevant Review Papers

Burgess, Alison, and Kullervo Hynynen. “Drug delivery across the blood-brain barrier using focused ultrasound.”Expert opinion on drug delivery 11.5 (2014): 711-721.

 

O’Reilly, Meaghan A., and Kullervo Hynynen. “Ultrasound enhanced drug delivery to the brain and central nervous system.” International Journal of Hyperthermia 28.4 (2012): 386-396.






The MRI-compatible image-guided focused ultrasound system consists of a computer-controlled high-precision three-axis positioning system and a high-power focused ultrasound transducer coupled.
The positioning system enables delivery of focused ultrasound energy to precise locations in soft tissue. The system is designed specifically for research in small to large animal models to investigate ultrasound-tissue interactions, and to evaluate the safety of therapeutic approaches prior to translation into humans. The entire FUS system fits within the bore of a clinical MR or CT scanner for image-guided treatment planning and delivery. The system is completely non-magnetic, enabling it to function within a high-field magnetic resonance imager for image-guided treatment planning and monitoring of ultrasound exposures. In addition, the system is compatible with X-ray CT imaging as well.
lp-production-iso-in-bore
Inside every RK-100 is a custom-built and calibrated focused ultrasound transducer capable of exposing millimeter – size volumes of tissue within a subject.
The non-magnetic positioning system can translate the transducer along arbitrary 3D paths during imaging. The delivery of ultrasound exposures is achieved using images acquired with MRI or CT, depending on the configuration of the system. Real-time monitoring of forward and reflected electrical power to the transducer enables consistent delivery of energy during experiments.
The system is capable of delivering exposures ranging from high-power continuous sonications for thermal coagulation of soft tissues, to pulsed sonications suitable for applications such as tissue lysis, drug delivery, or vascular permeabilization. Since the system is designed for research it is designed to be flexible, offering users the capability to design their experiments to suit their needs.