The Palpator™ is an automated assay system that measures cellular contractility and extracellular matrix stiffness of 3D tissue constructs. The highly sensitive force detection system reports cell and tissue physical properties corresponding to their physiological states.
Applications: • Cellular contractility • Extracellular matrix stiffness • Preload dependent cardiac contractility assay • Toxicity determinations • Signal transduction studies for cellular contractility • Long term (days, weeks, months) efficacy and toxicity testing • Pharmaceutical compound screening Demonstration Video (see left): Force measurement of engineered cardiac tissue paced under low and high tension
Articles lauding and substantiating InvivoSciences' research, products and technological advancements have been published in more than a dozen recognized and highly credible scientific journals over the last 10+ years. One of our co-founders, Tetsuro Wakatsuki, has contributed to the research and to the subsequent resulting articles, and has become one of the world's most recognized scientists in the area of cell construct technology. Citations include: - "A Method for Quantifying Mechanical Properties of Tissue following Viral Infection", V. Lam, T. Bigley, SS. Terhune, T. Wakatsuki. PLoS ONE (2012); 7(8): e42197. doi:10.1371/journal.pone.0042197
- "Hydrogel Tissue Construct-Based High-Content Compound Screening", V. Lam, T. Wakatsuki. Journal of Biomolecular Screening (2011); 16(1):120-8
- "High-Throughput Measurements of Hydrogel Tissue Construct Mechanics", J. P. Marquez, W. Legant, V. Lam, A. Cayemberg, E. Elson, T. Wakatsuki. Tissue Engineering: Part C (2009); 15(2):181-190
- "Engineered Heart Tissue: High Throughput Platform for Dissection of Complex Diseases", J. Lazar, H.J. Jacob, T. Wakatsuki. Journal of Cardiovascular Translational Research. (2008); 1(3):232-235
- “Tissue Engineering: A New Frontier in Physiological Genomics”, M. C. Petersen, J. Lazar, H. J. Jacob, and T. Wakatsuki, Phys Genomics (2007); 32 28-32.
- “Engineered tissue models: Innovative tools for early stage, information-dense, high-throughput screening for drug discovery” T. Wakatsuki, K. W. Lieder, and A. Annac, American Biotechnology Laboratory (2006); 24(11) 10-12.
- “Reconstitution of Frank-Starling Mechanism in Engineered Cardiac Tissues”, , C. F.. Asnes, J. P. Marquez, E. L. Elson, and T. Wakatsuki Biophysical Journal (2006);91(5):1800-10.
- “The Heart's Biochemical Response to Hypertension and Exercise” T. Wakatsuki, J. Schlessinger, and E. L. Elson, Trends in Biochemical Sciences (2004); 29(11): 609-17.
- “Phenotypic Screening for Pharmaceuticals using Tissue Constructs”, T. Wakatsuki, J. A. Fee, and E. L. Elson, Current Pharmaceutical Biotechnology (2004); 5: 181-189.
- “Rho-kinase-mediated Calcium-independent Contraction in Rat Embryo Fibroblasts.” D. A. Emmert, J. A Fee, Z. M. Goeckeler, T. Wakatsuki, E. L. Elson, P. Herring, P. J. Gallagher, and R. B. Wysolmerski, American Journal of Physiology – Cell Physiology (2004); 286: C8-21.
- “One-Dimensional Viscoelastic Behavior of Fibroblast Populated Collagen Matrices”, J. E. Wagenseil, T. Wakatsuki, R. J. Okamoto, G. I. Zahalak, and E. L. Elson, Journal of Biomech. Eng. (2003); 125: 719-25.
- “Reciprocal Interactions between Cells and Extracellular Matrix during Remodeling of Tissue Constructs” T. Wakatsuki, E. L. Elson, Biophysical Chemistry (2003); 100, 593-605.
- “Mechanics of Cell Spreading; Role of Myosin II” T. Wakatsuki, R. B. Wysolmerski, E. L. Elson, Journal of Cell Science (2003); 116: 1617-1625.
- “Effects of Cytochalasin D and Latrunculin B on Mechanical Properties of Cells.” T. Wakatsuki, B. Schwab, N. C. Thompson, E. L. Elson, Journal of Cell Science (2001); 114, 1025-36.
- “Cell Mechanics Studied by a Reconstituted Model Tissue” T. Wakatsuki, M. S. Kolodney, G. I. Zahalak, and E. L. Elson, Biophysics Journal (2000); 79, 2353-68.
- “A Cell-based Constitutive Relation for Bio-artificial Tissues” G. I. Zahalak, J. E. Wagenseil, T. Wakatsuki, and E. L. Elson, Biophysical Journal (2000); 79, 2369-81.
- “Collagen Receptor Control of Epithelial Morphogenesis and Cell Cycle Progression” M. M. Zutter, S.A.Santoro, J. E. Wu, T. Wakatsuki, S. K. Dickeson, and E. L. Elson, American Journal of Pathology (1999); 155, 927-40.
- “Three Dimensional Reconstitution of Embryonic Cardiomyocytes in a Collagen Matrix: A New Heart Muscle Model System” T. Eschenhagen,. U Remmers, H. Schoz, J. Wattchow, J. Weil, W. Zimmermann, H. H. Dohmen, H. Schafer, N. Bishopric, T. Wakatsuki, E. L. Elson, FASEB Journal (1997); 11, 683-94.
|